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ABSTRACT

The CQUAD4 thin plate element implemented in COSMIC NASTRAN is

capable of modeling thin layered plate and shell structures composed

of orthotropic lamina. Fiber-reinforced composites are among the

classes of inhomogeneous and non-isotropic materials which can be

treated. Although the CQUAD4 has been extensively checked in static

cases, little validation has been carried out for vibration response

modeling. This paper documents validation of the CQUAD4 element's

accuracy for vibration response analysis of thin laminated composite

plates.

The lower-order natural frequencies and mode shapes of ten

glass fiber-reinforced plastic (GFRP) and carbon fiber-reinforced

plastic (CFRP) plates are computed and compared to published experi-

mental and numerically-computed data. A range of ply geometries

including unidirectional, cross-ply, and angle-ply are considered.

The plates' length-to-thickness ratios all lie in the vicinity of

i00 to 150. The CQUAD4 plate idealizations provide natural frequen-

cy predictions within ten percent of measured data for all six

lowest modes of seven of ten plates. For two of the remaining three

plates, only the fundamental frequency is predicted with an error

greater than ten percent. Results for the one remaining plate do

not correlate with published data, possibly because of erroneous

reporting of its geometry or material properties in the literature.

To obtain accurate frequency predictions, lamina in-plane elastic

moduli had to be tuned to reflect each plate's fiber volume
fraction.

These results show that the NASTRAN CQUAD4 plate element is

useful and reasonably accurate for vibration and shock analysis of

structures composed of thin fiber-reinforced plastic plates.

INTRODUCTION

There is strong current Navy interest in exploitation of fiber-

reinforced plastics as lightweight materials for a wide variety of

ship structures. These structures must be designed to withstand in-

service loads of quasi-static, transient dynamic, and steady-state

dynamic nature. For many ship structures, transient shock is a pri-

mary load. For these and others, steady-state vibration response
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impacts the ship's acoustic signature. In both cases, the struc-

ture's modal properties (natural frequencies, mode shapes, and modal

loss factors) are key parameters governing its transient and steady-

state response. In most cases, the ship structures being designed

are complex enough so that numerical (finite element) methods must

be employed to obtain realistic modal property estimations.

The NASTRAN finite element code is one of the Navy's premier

tools for steady-state vibration response analysis of ship and

submarine structures. Undamped natural mode analysis and forced

vibration response analysis with hysteretic damping can be performed

by NASTRAN, as well as modal frequency and loss factor analysis for

structures with viscoelastic damping materials (Ref. i). NASTRAN is

also a key component of the NASHUA suite of codes for performing

radiated noise and acoustic scattering analysis of vibrating submer-

ged structures (Ref. 2,3).

The COSMIC NASTRAN CQUAD4 element is designed to model aniso-

tropic layered plates as well as homogeneous and isotropic plates.

The theory and assumptions behind the CQUAD4 have been informally

documented (Ref. 4). The CQUAD4 has been found to be more accurate

for a given finite element grid than its predecessor, the CQUAD2

element, for prediction of low frequency eigenmodes of thin-walled

cylindrical shells composed of isotropic materials (Ref. 5). To the

author's knowledge, no comparable study of the accuracy of the

CQUAD4 formulation for anisotropic plate or shell vibration yet

exists, particularly for plates and shells composed of layers of

fiber-reinforced plastic lamina.

This paper summarizes an investigation of the accuracy of the

NASTRAN CQUAD4 membrane and plate bending element for vibration

analysis of structures composed of thin fiber-reinforced composite

plates. This is accomplished by comparisons of NASTRAN-computed

undamped natural frequencies of ten GFRP and CFRP plates with

published experimental data and other numerical predictions.

NOTATION

Eli
Lamina extensional modulus in

direction parallel with fibers

E22
Lamina extensional modulus in

direction transverse to fibers

E33 Through-thickness extensional

modulus

GI2

GI3

In-plane lamina shear modulus

Transverse lamina shear modulus for

out-of-plane shearing of a fiber

cross section
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Transverse lamina shear modulus for

in-plane shearing of a fiber cross
section

Plate side length

Plate thickness

Fiber volume fraction

In-plane shear strain

Out-of-plane shear strains

In-plane extensional strains

Fiber orientation angle with

respect to one plate side

In-plane lamina Poisson's ratios

Transverse lamina Poisson's ratio

Average mass density

In-plane extensional stresses

In-plane shear stress

Out-of-plane shear stresses

ABBREVIATIONS

Average

Carbon fiber-reinforced plastic

Classical lamination theory

Consistent

Classical plate theory

Degree(s)-of-freedom

Finite Element Analysis

Gigapascals

Glass fiber-reinforced plastic

Hertz

Kilograms
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m Meters

mm Millimeters

params. Parameters

psi Pounds (force) per square inch

ref. Reference(s)

RMS Root-mean-square

sym Midplane-symmetric

BACKGROUND

Anisotropic plate analysis is more difficult and involves more

variables and parameters than isotropic plate analysis. The impor-

tance of accounting for transverse shear flexibility in relatively

thin composite laminates is discussed in the next section. The ways

by which the CQUAD4 addresses these difficulties are also briefly
described.

TRANSVERSE SHEAR DEFORMATION ISSUES

In composite plate mechanics, the counterpart of the well-known

Kirchhoff (Classical plate) theory (CPT) for isotropic plates is the

so-called "Classical Lamination Theory" (CLT). The two theories

invoke the same kinematic assumptions regarding the deformation of

the plate with respect to its middle surface; that is, sections

originally planar and perpendicular to the middle surface remain

planar and perpendicular in the deformed state. The mathematical

development of CLT occupies much of the text by Jones (Ref. 6). The

reader should consult this (or some other) text for detailed

exposition of CLT assumptions and derivation of the CLT equations.

The accuracy of the Kirchhoff kinematic assumption in isotropic

plate mechanics degrades when the plate thickness becomes signifi-

cant compared to its span length. For isotropic metallic plates,

transverse shear-stiffness-governed transverse deflection becomes

significant relative to flexural deflection when the span length-to-

thickness ratio (L/t) is sufficiently small. An idea of required

smallness can be gained from the discussion of "corrected" plate

flexural waves in Chapter II, Section 3b of Cremer, Heckl, and

Ungar (Ref. 7). They show, for a uniformly thick plate composed of

an isotropic material, that transverse shear effects decrease flex-

ural wavespeed by ten percent when the flexural wavelength is about

six times the plate thickness. For one-half wavelength over a plate

span length, this limitation translates to an L/t ratio of 3.

In the case of high modulus composite plates, an analogous

limitation of the adequacy of CLT is encountered at larqer L/t.

This more stringent limit arises because the ratio of effective

laminate extensional elastic modulus to shear modulus is a key fac-
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tor (other than section geometry) governing the magnitude of shear

deformation relative to flexure. A rough idea of limiting L/t

ratios for the adequacy of CLT for composite plates follows from

insertion of some "ballpark" ratios of effective laminate extension-

al and transverse shear moduli for GFRP and CFRP into the approxi-

mate expression for shear-corrected plate flexural wavespeed found

on page 115 of Reference 7. Using. El1 / Gg_ = 13 for GFRP and 125
for CFRP, ten percent differences in-Waves_ed arise for L/t of 6.75

and 20.9, respectively. (A comparable modulus ratio for isotropic

materials is 2.6). These ad hoc assessments are qualitatively corro-

borated by static examples found in section 6.5 of Reference 6. In

the problem of cylindrical bending of a CFRP strip with Eli / Gg_ =
125, maximum static deflection predicted by CLT is twenty _erce_

smaller than the true shear-corrected solution at L/t = 20.

The low frequency composite plate vibration literature is domi-

nated by evaluation of methods for account of transverse (interlami-

nar) shear in prediction of natural vibration frequencies and modal

deflections. The inadequacies of CLT even for fundamental plate

frequencies are repeatedly demonstrated in the literature for L/t's

of 5 or i0. Many approaches have been developed to provide finite

element-based plate formulations to handle through-thickness stress

fields for arbitrary L/t. In these complex formulations, transverse

normal stresses are no longer assumed to be zero, transverse shear

stresses are constrained to be zero on upper and lower laminate

surfaces, and shear stress continuity between laminae is maintained.

As a result, sections perpendicular to the plate midplane rotate

with respect to the midplane and warp out of a planar configuration.

The plate finite elements simulating through-thickness stress

fields in laminates are, obviously, quite sophisticated. Tables III

and VI of Mallikarjuna and Kant (Ref. 8) provide a good flavor for

the performance of some higher-order approaches for reckoning with

the effect of transverse shear and normal strains in plate vibration

frequency prediction. Table III shows that CLT provides reasonable

fundamental frequency predictions for a simply-supported CFRP angle-

ply plate for L/t at and above 20. Even for such highly anisotropic

plates, the complications of very complex high-order transverse

shear theories, necessary for laminate strength and structural

integrity problems, are not justified in vibration problems unless

L/t is less than about 20, or if short-wavelength (high frequency)
vibration modes are of interest.

The NASTRAN CQUAD4 membrane and bending element embodies the

assumptions of CLT, but contains first-order corrections for trans-

verse shear flexibility. When the CQUAD4 is used to model homogen-

eous plates, transverse shear strains vary linearly with the thick-

ness coordinate, and zero shear stress and strain boundary condi-

tions on upper and lower plate surfaces are not satisfied. The

shear energy implied by the linear distribution is corrected by a

multiplicative constant to produce the energy implied by the true

quadratic distribution. As a result of these assumptions, sections

perpendicular to the plate midplane are allowed to rotate with
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respect to the midplane, but remain straight when the plate is in
the deflected state. This ad hoc transverse shear correction ex-

tends the element's range of validity to thicker homogeneous plates,

but is not acceptable for inhomogeneous layered plates.

When modeling inhomogeneous plates composed of orthotropic

layers, a quadratic transverse shear strain distribution is assumed

in each layer of the CQUAD4 element. Interlaminar shear strains are

matched at lamina interfaces, and zero shear stress boundary condi-

tions are enforced on the upper- and lower-most lamina surfaces.

However, the through-thickness normal stress is assumed to be zero,

and complete consistency between the strain-displacement equations

for in-plane direct strain and transverse shear strain is not main-

tained. The CQUAD4 is thus seen to overcome the limitations of CLT

for laminated plates, but does not represent all aspects of the

kinematics of three-dimensional continua taking place in relatively

thick laminates.

The CQUAD4 element is discussed in more depth in the following
section.

THE CQUAD4 ELEMENT

The CQUAD4 is a four-noded planar element possessing membrane,

flexural, and transverse shear stiffness. In the case of layered

plates, individual laminae are not modeled explicitly; rather,

equivalent stiffness matrices for the plate as a whole are defined.

Each lamina is assumed to be in a state of plane stress, and the

laminae are presumed to be perfectly bonded by infinitesimally thin

non-shear-deformable layers. Each lamina is assumed to be specially

orthotropic, with six independent elastic moduli when through-

thickness direct stresses and strains are ignored. Any alignment of

lamina fiber axis with respect to the local element coordinate

system can be accomodated. Hence, any layup or stacking sequence

can be handled (unidirectional, cross-ply, regular or irregular

angle-ply). Layups unsymmetric with respect to plate midplane can

also be modeled, as membrane-bending coupling is accounted for when

it occurs. Each lamina may also be composed of a different ortho-

tropic material, if desired.

The element's stiffness matrix terms for determining in-plane

displacements and flexural rotations as a function of imposed forces

and moments arise from CLT assumptions. The CQUAD4's force-versus

strain equations for membrane, flexural, and membrane-flexure coup-

ling (Ref. 4) are identical to those developed in sections 2.1

through 2.6 of Reference 6. The kinematic assumptions regarding in-

plane and flexural strains and displacements follow classical

assumptions and require no explanatory remarks here. Reference 4

documents the force-versus strain matrix terms for transverse shear

strains. These are based on overall element equilibrium, continuity

of transverse shear between adjacent laminae, and satisfaction of

zero shear strain and stress boundary conditions on the upper- and

lower-most laminate facings. As mentioned earlier, the strain-

versus displacement matrix is based on the assumption that through-
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thickness planar sections rotate with respect to the plate midsur-

face and also distort out of planes originally perpendicular to the

midsurface.

The CQUAD4 is an isoparametric element, whose displacement

fields are interpolated through space by linear variations of in-

plane and transverse displacements (and rotations about midsurface)

between grid points. The associated in-plane strains are constant

between grid points but vary linearly with the thickness coordinate.

However, transverse shear strain varies quadratically through each
lamina thickness.

Those who use the CQUAD4 to model fiber-reinforced composite

plates must realize that the input elastic moduli are effective

moduli for a particular fiber-matrix combination. There are many

different fibers in use (glass, carbon, kevlar, and boron are exam-

ples) and many resins or matrix materials, each of which has their

own unique elastic moduli. Although matrix resins are usually con-

sidered to be isotropic, fibers have distinct extensional, trans-

verse, and shear moduli. The effective in-plane moduli of an ortho-

tropic continuum defined to be equivalent to the actual inhomogen-

eous fiber and resin system are (sometimes nonlinear) functions of

the extensional, transverse, and shear moduli of the fiber, the

extensional and shear moduli of the resin, and the Poisson's ratios

of the fiber and resin. The fraction of the lamina volume occupied

by fiber material is an important variable defining the magnitude of

effective in-plane lamina moduli. Some strength-of-materials rela-

tionships defining effective lamina in-plane moduli as a function of
constituent matrix and fiber moduli and fiber volume fraction are

developed in sections 3.1 and 3.2 of reference 6. Reference 9 pro-

vides a handy tabulation of effective lamina elastic moduli under

the assumption of a transversely isotropic lamina. Chamis provides

formulas for effective out-of-plane shear moduli as well as the more

commonly reported in-plane extension and shear moduli.

APPROACH

Specifics of the present vibration modeling study are now

described.

PLATE VIBRATION SPECIMENS

It was desired that the validity of the CQUAD4 be proven by

comparison to numerical results obtained independently by other

researchers, and to experimental data, if possible. Lin, Ni, and

Adams (Ref. i0,ii) and Xiao, Lin, and Ju (Ref. 12) have published

experimental data and finite element computations for the lowest six

vibration modes of square CFRP and GFRP plates for free, uncon-

strained boundary conditions. They measured and computed both natu-

ral frequencies and damping loss factors, which makes their work

almost uniquely complete and thorough. Reference ii contains data

for nine plates repeating that for four plates treated in reference

i0. Reference 12 revisits three previously examined plates with a
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more refined finite element formulation allowing plane sections to

rotate and warp, with consistent correction of al___!lstrain-displace-

ment relations for these kinematic conditions. This paper contains

data for one additional new plate, making a total of ten unique

plates in all (four CFRP and six GFRP). Refinement of their finite

element method (Ref. 12) improved correlation of their predictions

with measurements.

The geometric and material parameters of the ten plates studied

by Lin et. al. and Xiao et. al. are listed (in SI units) in Table i.

The parameters given in reference 12 for plates 770 and 772 are

inconsistent with those reported in reference ii. The NASTRAN study

confirmed that the side lengths, thicknesses, average mass

densities, and fiber volume fractions given for plates 770 and 772

in reference ii are the correct values. Further correlation of

plate parameters, frequencies, and mode shapes between references

10-12 revealed accidental reversal of mode shape plot labels in ref-

erence Ii. In addition, two unidirectional GFRP plates of different

size are reported in references ii and 12 with the identification

number 761. (They are herein distinguished from the other as 761L

and 761X). These discrepancies initially caused much confusion, but
the author is confident that the data in Table 1 is correct.

Some features of these plate specimens are notable. All of

them are square, and have L/t ratios in the vicinity of i00 to 150.

Even though such L/t would seem to be in the range of applicability

of CLT, Xiao et. al. show that CLT, which totally ignores transverse

shear deformations, overestimates natural frequencies by factors as

high as sixteen percent over a theory with first-order shear correc-

tion. All of the laminates listed in Table 1 are symmetric about

the plate midplane, eliminating flexure/extension coupling effects.

Five plates (GFRP specimens 734, 761(L), 761(X) and CFRP specimens

762 and 764) have "specially orthotropic" lamina (all fibers aligned

with the plate sides). For these plates, there is no coupling

between in-plane extension and in-plane shearing, so their vibration

mode shapes have nodal lines more or less parallel with the plate

edges. The other five plates (765, 769, 771, 770, 772) have at

least some plies with fibers angled relative to plate edges, pro-

viding more complex mode shapes.

All plates were tested with "free" edges (supported by soft

foam rubber strips) and numerically analyzed with zero-constraint

boundary conditions. (Although many practical design problems of

interest would involve plate structures with boundary constraints,

this feature eliminates uncertainties about which boundary degrees-

of-freedom (DOF) to constrain to obtain "simply supported" edges).

An iterative technique was used to obtain natural frequencies and

modal damping loss factors. First, the specimens were excited into

steady-state vibration by an electrodynamic shaker, and approximate

resonance frequencies were determined. Nodal lines for each excited

natural mode were located by the classical Chladni sand pattern

technique. Then, for each mode of interest, locations of the

support strips were then adjusted to align with nodal lines. A

transient excitation technique was then used to obtain more precise
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estimates of resonance frequencies and modal damping loss factors.

LAMINA MATERIAL PROPERTIES

Effective in-plane lamina elastic moduli are reported in Lin
et. al. and Xiao et. al. These are listed in Table 2, in both SI
and English units. These moduli pertain to a lamina microstructure
where half of the total ply volume is occupied by fibers and half by
the matrix. For each plate analyzed here, the moduli input to
NASTRANmust be adjusted up or down from these nominal values,

according to the measured fiber volume fraction (Vf) for each plate.

In general, the moduli vary nonlinearly with V_, bQt experimentally-
verlfied semi-empirical equations are availabl_ for determining Vf-

adjusted moduli. References 10-12 reported only the nominal moduIi

in Table 2, but provided a literature source (Ref. 13) for accom-

plishing the adjustments.

For orthotropic laminae in a state of plane stress (in the 1-2

plane), the only independent engineering moduli are E , E 2' G

and _I_. The additional Poisson's ratio _21 must s_isf_ the 12'
relationship:

_12 / Ell = _21 / E22

The NASTRAN CQUAD4 element enforces this constraint on 1)_i (Ref.

4). With these moduli, all in-plane strain and stress components

are defined by the CLT. However, the NASTRAN CQUAD4 element also

requires, as input, nonzero transverse shear moduli G and G_3,
associated with out-of-plane shearing, which are not _ecifie_ or

required in CLT. Fortunately, fiber-reinforced lamina may often be

assumed to be "transversely isotropic" in analysis of composite

structures, as implied by reference 9. This means that if the

lamina lies in the 1-2 plane, and the fibers are aligned in the l-

direction, then the transverse shear modulus GI_ is equal to the

in-plane shear modulus G._. The transverse sh_r modulus associated

with shearing of the matrix "around" the fibers and distortion of

the fiber in a plane perpendicular to its axis (G2_) remains to be
determined. To clarify these matters, the stress _nd strain compo-

nents for a transversely isotropic lamina with zero direct stress

normal to the lamina are illustrated in Figure i.

Linet. al. and Xiao et. al. did not report either of the

transverse shear moduli used in their analyses. Educated guesses

had to be made for both the CFRP and GFRP G _. Reference 8 provides
nondimensional elastic moduli for a CFRP-Ii_ material which are

closely satisfied by the in-plane parameters for the CFRP in Table

2. According to reference 8, G_ should equal 0.2E99. This implied

value of Gg_ was used in the pr_ent CFRP plate anaI_ses, based on

fiber volu_ fraction-adjusted E92. For the glass fiber lamina, G23

= 0.6G I_ was assumed, based on iM-house experience with such mater-
ials. _he assumed out-of-plane moduli are indicated in the "notes"

section of Table 2. G23 could also be estimated by methods reported
in reference 9.
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Table 3 contains lamina elastic moduli for each of the ten

plates, after adjustment of the nominal moduli in Table 2 for fiber

volume fraction. Lin et. al. did not correct the in-plane Poisson's

ratio for fiber volume fraction, even though Ni and Adams show that

it decreases appreciably for increasing Vf. Lin et. al. claim that

accounting for this decrease had no significant effect on their

calculated natural vibration frequencies. We match their assumption

by keeping A). 2 constant at 0.3 for all ten plates. In general,

_)12 should b_ adjusted for Vf.

ASSUMPTIONS REGARDING LAMINATE BEHAVIOR

The kinematic assumptions of the CQUAD4 element have been dis-

cussed previously; namely, that planar sections perpendicular to the

plate midplane can rotate and warp relative to the midplane. NAS-

TRAN-computed natural frequencies for CQUAD4 plate idealizations

will, subsequently, be compared to some CLT predictions (Ref. 12)

and to the FEA predictions of Lin et. al. (Ref. II) and Xiao et. al.

(Ref. 12) These three approaches differ in accuracy, and it is

important to understand how the NASTRAN predictions should compare

with them. Kinematic assumptions are discussed first.

As discussed previously, CLT totally ignores any transverse

shear deformation effect, and will always predict lower-order

vibration frequencies which are too high for laminates with low L/t

and high extensional-to-shear modulus ratios. In terms of through-

thickness lamina kinematics, CLT prescribes linear variations of

direct and in-plane shear strains, and zero transverse shear

strains. The kinematic assumptions of Linet. al. (Ref. ii) and

within the CQUAD4 (Ref. 4) are identical, and imply linear through-

thickness variations of direct and in-plane shear strains and

quadratic through-thickness variations of transverse shear strains,

with zero shear stress boundary conditions on the upper- and lower-

most lamina facings satisfied. However, this thick plate-type

theory is only an approximation; consistent correction of al__!l

strain-displacement relationships when cross-section warping is

allowed requires cubic through-thickness variations of direct and

in-plane shear strains. Xiao et. al. (Ref. 12) include this consi-

derable complication in their plate-type FEA formulation, which can

be understood as a special case of three-dimensional elasticity.

From an understanding of kinematic assumptions alone, CQUAD4

composite plate idealizations should provide natural frequency

estimates that are (i), more accurate than CLT, (2) as accurate as

the Lin et. al. predictions, and (3) less accurate than the Xiao et.

al. predictions. However, other factors will influence the com-

parisons between FEA-predicted frequencies; particularly, the

polynomial form of the interpolation functions expressing element

displacement fields in terms of grid point displacements, and the

mass matrix formulation (consistent or lumped). The CQUAD4 utilizes

linear interpolation functions with respect to the element's four

grid points. Lin et. al. do not specify the interpolation func-
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tions used in their "8-node 40-degree-of-freedom" elements, although

they can be guessed to be of at least quadratic order.

NASTRAN ANALYSES

The results of the NASTRAN computations are now compared to

the calculations and experimental data in references 10-12.

FEATURES OF THE NASTRAN PLATE IDEALIZATIONS

Lin et. al. and Xiao et. al. employed a 6-by-6 mesh of 8-noded

isoparametric rectangular elements in all of their plate FEA ideali-

zations. Each element possessed 40 DOF, (5 per grid point), imply-

ing that all rotations about axes normal to the plate surface were

constrained. As in the CQUAD4, they applied a numerical condition-

ing factor to transverse shear stiffness terms to eliminate excess-

ive shear stiffness ("shear locking"); a consequence of numerical

integration of element stiffness. The NASTRAN CQUAD4 elements also

have five DOF per node, with normal axis rotation constraints app-

lied, and are also conditioned to avoid shear locking.

The CQUAD4 differs from the Lin and Xiao et. al. elements in

one important way; they are 4-noded isoparametric quadrilaterals and

thus have linear interpolation of in-plane displacements between

grid points instead of quadratic interpolation. Thus, although the

Lin et. al. element is kinematically similar to the CQUAD4 as far as

through-thickness shear effects are concerned, the elements' assumed

in-plane displacement fields differ as a function of the plate's in-

plane dimensions. The Xiao et. al. element provides for a more com-

plex through-thickness displacement and strain distribution than the

Lin et. al. element and the CQUAD4, as discussed earlier.

The NASTRAN CQUAD4 meshes used here consist of a 12-by-12 grid

of elements, with 169 grid points and 845 unconstrained DOF. These

idealizations are roughly comparable to the Lin and Xiao models in

modal displacement field interpolation quality. Three of the plates

were initially modeled with 6-by-6 meshes with 49 grid points and

245 DOF, but these idealizations did not provide sufficient mode

shape resolution to be acceptable. The Lin and Xiao et. al. mesh is

compared to the NASTRAN mesh in Figure 2.

The edges of the NASTRAN plate idealizations were unconstrain-

ed, and all rotations about axes normal to the plate surface were

suppressed. A SUPORT input record imposing fictitious constraints

on all five remaining DOF on one grid point was used to provide

zero-frequency rigid body modes. The FEER eigenmode extraction

method was used in NASTRAN Rigid Format 3 (normal modes analysis),

with the lowest twenty modes requested. The Inverse Power method

was employed in some trial runs; it provided about half as many

frequencies as FEER but at more than two times greater run time and

cost. All computations were performed by RPK COSMIC NASTRAN, 1990

release, installed on the DTRC CRAY X-MP supercomputer in a COS

operating system environment. Typically, 22 to 24 modes were ex-

tracted by FEER in 23 to 24 CP seconds.
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Lin and Xiao do not mention whether they used lumped or con-
sistent mass matrix formulations. Both options were considered in
the NASTRANstudy.

NASTRANMODALANALYSIS RESULTS

Initial NASTRANanalyses utilized nominal elastic moduli based
on fifty percent fiber volume fraction. Although predicted frequen-
cies were in the general vicinity of measured values, they did not
compare with CLT results, the Lin et. al. results, or the Xiao et.
al. results in the expected way. That is, the CQUAD4 did not neces-

sarily appear more accurate than CLT and less accurate than the Xiao

et. al. approach. It suffices to say that fiber volume fraction

strongly influences effective moduli and must be accounted for to

obtain credible composite plate modal predictions.

Relative NASTRAN frequency predictions are compared with CLT,

Lin's, and Xiao's results in Table 4. There is, in general, good

correlation with measurements, and NASTRAN's frequency error trends

are comparable to those in the Lin et. al. analyses (especially

those for a consistent mass matrix). The fact that effective lamina

elastic moduli must be corrected for fiber volume fraction to obtain

credible natural frequency predictions for laminated composite

plates is emphasized in Table 5, where root-mean-square (RMS) values

of frequency prediction percentage error are tabulated for the six

modes of each plate. RMS error is seen to be significantly reduced

in most cases when fiber volume fraction-corrected lamina moduli are

employed. The major exception is plate 765, which still suffers

from some large unknown systematic error making predicted frequen-

cies far too low. Results for plate 770 were not much changed since

actual Vf was already close to one-half. RMS errors for plates 764
and 771 _emain at ten percent and above However, the major part of

these high errors involves their fundamental modes, which can be

easily impacted by test article boundary constraint. (The Linet.

al. analysis also predicted overly high frequencies for these

modes).

Absolute measured and predicted natural frequencies are summar-

ized in Table 6, which lists Lin et. al. measurements and computa-

tions and the NASTRAN CQUAD4 idealization results for lumped and

consistent mass. Mode-by-mode and average percentage frequency

prediction errors are listed in Table 7 along with mode shape de-

scriptions. The NASTRAN lumped mass model gives the lowest average

error in seven of ten cases, and the NASTRAN consistent mass model

is best in two of the three remaining cases. (Interestingly, the

consistent mass model errors roughly parallel those of the Lin

model). Lin et. al. calculations are "best" only for plate 765, for

which the author believes a parameter was misdocumented in reference

ii. In six of the nine plates other than 765, NASTRAN predicts

frequencies that are all at or within ten percent of measured. In

the other three, errors are greater than ten percent only for the

first and/or second modes, and these roughly parallel the errors in

the Lin et. al. analyses.

62



Plots of chosen NASTRAN-computed eigenmodes are presented in
Figures 3-8. Plate 761X does not appear since its mode shapes are
identical to plate 761L, and plates 764, 770, and 772 are omitted
since their mode shapes are very similar to those of plates 734,
769, and 771. The nodal patterns can be confirmed as being identi-
cal to those measured. (Figures 3-8 should be compared to Tables 8,

7, i0, 9, ii, and 3, respectively, of reference ii). Finer details

of some NASTRAN modes, particularly the veering of nodal lines away

from each other in plates with angled plies, are more easily seen in

colored graphics terminal displays. Only the plates with specially

orthotropic ply layups (734, 761L, 761X, 762, 764) exhibit eigen-

modes with nodal lines more or less parallel to the plate sides.

Most of these modes are essentially beam-like flexural modes with or

without phase changes at one symmetry plane. In contrast, plates

with angled plies possess a larger number of more complex plate

flexural modes.

The natural frequency results obtained via NASTRAN CQUAD4 plate

element idealizations in these simple composite plate vibration

problems are judged to be acceptably accurate for engineering pur-

poses. The element performs as well as alternative formulations of

similar accuracy (the Lin et. al. element) for both GFRP and highly

anisotropic CFRP plates for a variety of ply geometries. Potential

users of the element must be cautioned that this validation effort

concerned plates with L/t ratios in the vicinity of i00 to 150. For

such L/t, modeling of laminate transverse shear stiffness helps to

eke out a few percent in low-order natural frequency accuracy, but

is not absolutely essential to obtain rough-cut results. A more

critical test of the CQUAD4 for modeling highly anisotropic lami-

nates would have to concern plates with L/t lower than, say, about

50.

It should be mentioned that Lin et. al. and Xiao et. al. also

measured and computed the specific damping capacities (2_ times the

modal loss factor) of each mode. Their FEA program was capable of

modeling orthotropic lamina damping properties. No attempt was made

to predict modal damping factors in this effort, as NASTRAN is curr-

ently restricted to the modeling of isotropic material damping.

SUMMARY

The performance of the NASTRAN CQUAD4 membrane and plate

element in analysis of undamped natural vibration modes of thin

fiber-reinforced composite plates has been evaluated. The element

provides natural frequency estimates that are comparable in accura-

cy to alternative formulations, and, in most cases, deviate by less

than ten percent from experimentally measured frequencies. The

predictions lie within roughly equal accuracy bounds for the two

material types treated (GFRP and CFRP), and for the ply layups

considered (unidirectional, cross-ply, angle-ply). Effective

elastic lamina moduli had to be adjusted for measured fiber volume

fraction to attain this level of accuracy; nominal moduli at fifty

percent volume fraction gave significantly inferior frequency

estimates. The lumped mass option provided more accurate frequen-
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cies than the consistent mass option.

This evaluation concerned only plates with L/t ratios on the

order of i00 to 150. Since the CQUAD4 utilizes first-order correc-

tions for transverse laminate shear stiffness, the element should

provide useful frequency estimates for plate-like structures with

lower L/t. For plates with L/t below 20, consideration should be

given to idealizing with 3-D solid elements.

Based on the observation that natural frequencies and mode

shapes are predicted with acceptable engineering accuracy, it is

concluded that the CQUAD4 should be a useful and accurate element

for transient shock and steady-state vibration analysis of Naval

ship structures.
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Table 1. Geometric and material parameters

of ten fiber-reinforced plastic

plates tested and analyzed by

Lin et. at. and Xiao el. aL.

I
I Plate

J ldent.

I Number

I
I ........

734

761t.

761X

765

769

771

762

764

77O

I
Plate PLate I PLate Fiber Nass

Material Length J Thickness Volume Density

L I t Fraction _ 3

(gin) I (nee) Vf (kg/m)

GFRP

GFRP

GFRP

GFRP

GFRP

GFRP

CFRP

CFRP

CFRP

227.0

182.75

249.0

230.5

224.2

204.6

178.0

234.5

215.0

2.05

1.64

2.28

1.45

1.37

2.11

1.58

2.12

1.62

0.451

0.568

0.530

0.607

0.621

0.592

0.516

0.342

0.494

1813.9

1971.0

1924.7

2023.6

2041.7

2003.5

1566.0

1446.2

1551.4

Number

of

Pties

8

8

8

8

8

12

8

8

8

Ply Source

Lsyup of

(degrees; see Data

Figure 2) (ref. no.)
......... ...°_.. ..........

[019010190]

[0]

[0]

[45/-45/45/-45]

[01901451-45]

[10/-60/60121
[0]

[019010190]

[0190145/-45]

10,11,12
11

12

11

11

10,11

11

10,11

11,12

772 CFRP 215.6 2.02 0.618 1636.4 12 [(0/-00/00) 2] 10,11,12
J .................................................................................... . ................

i NOTE: ALL Laminates ere symmetric about plate midplane.

I

Table 2. Nominal in-plane effective elastic

nmduli of GFRP and CFRP Laminae at

fifty percent fiber volume fraction

I I

Material Fiber I Resin I Ell
type I tYpa I

I I (GPa)I (pa,i,
I I I/lO )

.................... I ....... I ....... I.......
GFRP "GLass" DX210 37.78 5.48

epoxy

CFRP HH-S DX210 172.7 25.0

epoxy
DX210 .......... 3.21 0.47

epoxy

E22

(GPa) (_)
110 )

10.90 1.58

7.20 1.04

3.21 O.47

G12

(GPs) (psi)
/10 )

4.91 0.71

3.76 0.55

1.20 0.17

"/)12

0.3

0.3

0.34

...................................................................................... i

= 0.6(G12) = 2.94 GPa is assumed for GFRP, I
NOTE: G23 0"2(E22) 1.44 GPs is assumed for CFRP. I

G23 I
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TabLe 3. In-plane and out-of-plane effective elastic

moduti for GFRP and CFRP Laminae, adjusted

for fiber volume fraction of each plate

PLate

ldent.

Number

734

761L

761X

765

769

771

762

764

770

772

I I

PLate i Fiber Ell E22, I G12, G23

Material J Volume E33 ! G13
I Fraction (GPa) J (GPa)

I Vf (GPa) I (GPa)
.......... I................................ I .....................

GFRP

GFRP

GFRP

GFRP

GFRP

GFRP

CFRP

CFRP

CFRP

CFRP

0.451

0.568

0.530

0.607

0.621

0.592

0.516

0.342

0.494

0.618

34.4

42.5

39.9

45.2

46.2

44.1

178.0

119.0

171.0

213.0

9.7

13.0

12.0

14.2

14.4

14.0

7.4

5.6

7.1

8.7

4.3

5.7

5.2

6.5

6.7

6.2

3.9

2.6

3.7

5.0

2.6

3.4

3.1

3.9

4.0

3.7

1.5

1.1

1.4

1.7

J ..........................................................................

J NOTE: "l)12 = 0.30 is assumed for all Laminates, uith no Vf adjustment.
I

Table 4. Comparison of natural frequencies from final

NASTRANCQUAD4 idealizations and predictions of

Lin and Xiao et. at. to measured data

PLate

Number

and

par ares.

ref. 12 11,12 ref. 12 Lumped J consis.

.......... I ........ I ........................................... I .........
734

GFRP

8 plies

[0190101

90] sym

Lit =

110.7

Mode Natural Frequency Ratios, (computed / measured)
Number

CLT Lin et. Xiao NASTRAN I NASTRAN

at. ref. et. at. 12-by-12 J 12-by-t2

-I
1.20 1.07

1.09 1.00

1.20 1.03

1.11 1.05

1.12 1.04

1.11 1.06

.......... i ..........

0.98

1.00

1.00

1.03

1.03

0.94

0.98

0.99

1.05

0.97

1.01

1.03

1

2

3

4

5

6

1.01

1.01

1.00 1.03

0._ 1._

I ..................... J ..........
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Table 4. (Continued)

Plate

NLmri_er

a_

_rams.

..........I........I..............................
761L

GFRP

8 plies

[0] sym

L/t =

111.4

Mode Natura[ Frequency Ratios, (compJted / measured)

Number

CLT Lin Xiao I NASTRAN J NASTRAN

el. at. et. at. I 12-by-12 I 12-by-12

ref. 12 ref. 11 ref. 12 I lumped I consis.

--I .......... I ..........
1.13

1.00

1.05

1.00

1.04

1.03

I

2

3

4

5

6

1.11

0.97

1.02

0.94

0.99

0.97

1.13

1.00

1.05

0.97

1.02

1.03

.......... I ........ I ..................... I.......... I .....................
761X

GFRP

8 pries

[0] sym

L/t =

109.2

765

GFRP

8 plies

[45/-45/

45/-45]

sym

L/t =

159.0

I

2

3

4

5

6

1

2

3

4

5

6

1.18

1.20

1.20

I.08

1.10

1.14

1.09

I.08

1.08

0.99

1.02

1.03

0.98

1.00

0.98

0.99

0.99

0.99

1.10

1.02

1.05

0.94

0.98

0.95

1.11

1.05

I.08

0.96

1.02

1.01

.... 1.09

.... 0.88

.... 0.95

.... 1.07

.... 1.06

1.02

0.82

0.65

0.68

0.78

0.78

0.72

0.83

0.67

0.70

0.81

0.81

0.77

.......... I ................................ I ......... -I

69



Table 4. (Continued)

Plate

Number

and

par ares.

769

GFRP

8 pties

[0/90/451

-45] sym

L/t =

163.6 5

6

.......... j ........

771 I

GFRP

12 plies 2

[0/-60/60 3

/0/-60/60]

sym 4

L/t = 5

97.0

6

Mode

Number

CLT

ref. 12

........ I ..........

I ....

2 ....

3 ....

4 ....

Natural Frequency Ratios, (computed / measured)

Lin I Xiao NASTRAN NASTRAN

el. at. J et. at. 12-by-12 12-by-12

ref.11 J ref. 12 lumped consis.

.......... I .......... I .......... I ..........

0.95

1.08

0.98

1.01

.... 1.04

.... 1.01

0.93

1.0]

0.92

0.96

0.99

0.94

0.95

1.06

0.94

0.99

1.03

0.99

..........f..........'..........f..........I..........
.... 1.20

.... 1.17

.... 0.98

.... 1.06

1.07

1.03

1.19

1.13

0.93

1.02

1.03

0.95

I..........I........I..........
I ....

2 ....

3 ....

4 ....

5

6

762

CFRP

8 plies

.... 1.10

.... 1.03

.......... j ..........

[0] sym

L/t =

112.7

1.20

1.16

0.96

1.06

1.07

1.01

........ "'i i i..............................

1.03 .... 1.01 1.02

1.10 .... 1.02 1.05

1.06 .... 0.99 1.04

1.11 .... 1.01 1.08

.... 1.00 1.07

.... 1.00 1.03

.......... I.......... I ..........
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TabLe 4. (Continued)

Plate

N_r

and

params.

I ..........

764

CFRP

8 plies

(0190101

90) s1_

L/t =

N_

Number

........ I .......... i ..........

.... 0.84

.... 0.97

.... 0.97

.... 0.99

110.6 5 .... 1.00

6 .... 0._

..................I..........I..........
1

2

3

4

5

6

Natural Frequency Ratios, (computed / measured)

CLT Lin I Xiao I NASTRAM NASTRAM

et. at. I el. at. I 12-by-12 12-by-12

ref. 12 ref. 11 I ref. 12 I lumped consis.

I .......... I....................
.... 0.81 0.82

.... 0.95 0.97

.... 0.93 0.96

.... 0.97 0.99

.... 0.97 I.O0

.... 0.92 0.97

.......... m ....................

1.11 1.138

1.11 1.06

1.09 1.00

1.00 1.00

1.08 0.99

1.03 1.00

77O

CFRP

8 plies

[0190145

1-45] sym

Lit =

132.7

1.14

1.16

1.15

1.07

1.15

1.11

.................. I .......... I..........
1.07

1.05

1.07

1.10

1.09

1.09

1.05

1.03

1.04

1.06

1.05

1.03

772

CFRP

12 plies

(0/-60160

/0/-60/60]

sym

Lit =

106.7

1

2

3

4

5

6

1.10 1.12

1.09 1.12

1.06 1.10

0.98 1.01

1.06 1.09

0.99 1.04

.......... I .......... I..........
1.00

1.00

1.01

1.00

1.00

0.99

1.04 1.05

0.99 1.02

1.01 1.04

1.02 1.06

1.02 1.05

0.97 1.03
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TabLe 5. Root-mean-square errors in NASTRAN-computed natural

frequencies for ten composite plates for uncorrected

and corrected effective lamina elastic modul|

PLate RHS error in NASTRAN-predicted frequency

Number

With uncorrected With corrected

moduli (percent) moduLi (percent)
.................................... ..........................

734

761L

761X

765

769

771

762

764

770

772

5.3

8.8

10.7

34.4

15.6

9.7

2.1

11.9

7.1

9.6

2.9

5.5

5.7

26.7

5.4

10.1

0.8

9.6

6.6

2.5

Table 6. Comparison of absolute measured and predicted

composite plate natural frequencies of Lin el. al.

with NASTRANC¢_JA04 computations

Plate Mode

Number Number

and

parms.

.......... i ........

734 1

GFRP

8 plies 2

[0/9010/ 3

90] sym

4

L/t =

110.7 5

6

Natural Frequencies (Hz)

Lin et. at., NASTRAN NASTRAN

ref. 10-12 12-by-12 12-by-12

measured { computed lumped consis.

62.2

131.4

159.2

180.5

200.1

326.7

66.4

131.6

164.5

189.8

208.9

347.2

64.2

123.8

156.4

177.9

199.2

321.2

65.0

127.4

160.9

184.0

206.0

338.4

.................. i ..........................................
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Table 6. (Continued)

Plate Mode

Number Number

and

parame.

measured computed I lumped I consis.

.......... ........ I..................... I .......... I .........
761L 1 78.1 88.1 86.9 88.0

GFRP

8 plies 2 131.2 130.7 127.1 130.7

[0] sym 3 211.5 222.2 215.0 222.2

L/t = 4 246.0 246.1 232.1 238.7

111.4

5 287. I 297,8 284. I 294,2

6 362.6 374.4 352.9 375.0

761X I 57.2 62.5 62.9 63.7

GFRP

8 pries 2 90.3 97.4 92.5 95.2

[0] sym 3 148.7 160.5 155.9 161.2

L/t = 4 181.6 180.2 170.4 175.2

109.2

5 211.2 215.9 207.5 214.9

6 270.5 278.8 256.9 272,9

765 1 84.0 91.3 68.7 69,6

GFRP

8 plies 2 114.0 99.9 74.4 76.6

[45/-45/ 3 157.0 149.5 107.1 110,0

45/-45]

sym 4 199.3 212.6 156.3 161,6

L/t = 5 213.4 226.7 167.2 173.4

159.0

6 346.6 353.5 249.6 265,5

.......... i ........

Natural Frequencies (Hz)

Lin et. a[., I NASTRAN I NASTRAN

ref. 10-12 I 12-by-12 I 12-by-12

-I

.......... ' .......... I .......... ' ..........

.......... I .......... I .....................
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Table 6. (Continued)

Plate

Number

an

_rams.

769

GFRP

8 plies

[01901451

-45]sym

L/t :

163.6

Mode

Number

1

2

3

4

5

6

Natural Frequencies (Hz)

Lin el. a[.,

ref. 0-12

measured computed lumped I consis.

.......... i .......... | .......... I .........

NASTRAN I NASTRAN

12-by-12 I 12-by-12

55.1

97.2

118.4

148.7

55.5

99.0

123.0

151.3

58.2

91.6

125.5

150.4

156.8

277.3

163.0

279.4

54.4

94.5

115.2

143.8

161.1

274.4

155.7

260.5

.......... I........ I ..................... t .....................

108.2

168.6

218.6

280.2

301.0

505.2

90.4

144.7

222.3

264.1

281.1

492.6

81.5

107.4

196.6

295.5

382.5

531.0

771 1

GFRP

12 plies 2

[0/-60/60 3

/0/-60/603

sym 4

l/t = 5

97.0

6

.......... I ........

762 I

CFRP

8 plies 2

[0] sym 3

L/t = 4

112.7

5

6

107.4 108.8

163.6 168.4

206.6 212.4

270.6 279.8

290.9 300.9

469.7 499.3

.......... I .......... I ..........
83.6

118.4

207.8

329.4

419.8

546.9

82.2 83.3

109.4 112.5

198.4 205.1

299.2 318.2

383.6 410.2

530.6 545.9

.......... = .......... = .......... I .........

-I

I
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TabLe 6. (Continued)

PLate

Number

and

_rems.

764

CFRP

8 plies

[0190101

90] sym

Lit =

110.6

.......... I.

77O

CFRP

8 pLies

[0190145

/-45]sym

L/t =

132.7

772

CFRP

12 plies

[0/-60/60

I I01- 60160]

aym

Lit :

106.7

Node

Number

L|n et. ml.,

ref. 10-12

measured I computed

........ I .......... I ..........
1 _.9 I 58.1

2

3

4

5

6

218.9

251.2

305.4

323.5

452.5

Natural Frequencies (Hz)

NASTRAN I NASTRAN

12-by-12I 12-by-12
Lumped I co.is.

.......... i ..........

55.5 56.2

I
213.3 206.9 212.8

243.5 233.3 241.5

302.5 294.9 303.4

324.2 312.7 323.7

441.6 414.5 437.8

......... i

87.0

226.9

283.4

302.0

352.4

517.3

165.0

277.6

387.6

431.1

512.0

799.4

....... i .......... | .......

1 77.8 86.3

2 202.7 224.5

3 258.0 280.4

4 298.7 298.8

5 322.0

6 496.7

..°E .......... 1-

85.9

220.6

273.9

293.6

348.4 340.6

512.2 490.0

........ J .......... i .....

1

2

3

4

5

6

156.6 165.2

272.0 279.1

372.3 387.8

407.8 432.6

486.1 511.4

779.0 800.4

I

..... i ..........

162.7

269.9

376.9

416.7

494.7

752.6
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Table 7. Mode-by-n_cle tabulation of NASTRAM CQUAD4 idealization

frequency prediction errors, with averaged percentage

errors and eigenn_de descriptions

Plate Mode

Number Number

and

par ares.

! ..................

734 1

GFRP

8 plies 2

[0190101 3

90] sym

4

Lit =

110.7 5

6

I ........

I avg.

.......... i ........

761L I

GFRP

8 plies 2

[03 sym 3

L/t = 4

111.4

5

6

I ........

I avg.

Percentage errors E i genmode

description

Lin et. NASTRAN NASTRAN

at. 12-by-12 12-by-12

lumped consis.

.......... • .......... i .......... I .....................

+ 7 + 3 + 5 shear and flexure

0 - 6 - 3 2-noded beam abt.

weak axis

+ 3 - 2 + 1 2-nc_ed beln abt.

strong axis

+ 5 - 1 + 3 2-noded beam abt.

weak axis + shear

+ 4 0 + 3 2-noded beam sbt.

strong axis + shear

+ 6 - 2 + 4 fundamental

plate flexure

................................

+ 4.2 - 1.3 + 2.2

.......... I .......... , .......... i .....................

+ 13

0

+5

0

+4

+3

+ 11 + 13

-3 0

+2 ÷5

-6 -3

-1 +2

-3 +3

................................ i

+ 4.2 0 + 3.3

shear and flexure

2-no<Lod beam abt.

weak axis

2-noded beam abt.

weak axis + shear

2-noded beam abt.

strong axis

2-noded beam abt.

strong axis + shear

3-noded beam abt.

weak axis

.......... I ........ I ..................... I ................................
761X

GFRP

8 plies

[0] sym

L/t :

109.2

+9

+8

+8

- 1

+2

+3

+ 10 + 11

+2 +5

+5 +8

-6 -4

-2 +2

-5 +1

I........ I..................... I..........
I avg. I +4.8 +0.7 1+3.8

shear and flexure

2-noded beam abt.

weak axis

2-noded beam abt,

weak axis + shear

2-noded beam abt.

strong axis

2-noded beam abt,

strong axis + shear

3-rio dad beam abt.

week ax i s

.......... I........ I..................... I............................... -I
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TabLe 7. (Continued)

PLate

M_,mTd_r

a_

_r_.

765

GFRP

8 plies

[45/-45/

45/-45]

sym

L/t =

159.0

769

GFRP

8 plies

[0/90/45/

-45]sym

L/t =

163.6

771

GFRP

12 plies

[0/-60/60

/O/-60/60]

sym

L/t =

97.0

Node Percentage errors Eigenmode

Number description

Lin et. NASTRAM J MASTRAN

at. 12-by-12 J 12-by-12

Lumped J consis.

........ I..................... I................................
1 +9 - 18

12 " 35

-5 -32

+7 -22

+6 - 22

+2 - 28

- 17

- 33

- 30

- 19

- 19

- 23

plate ftexurat

plate ftexurat

plate ftexurat

plate ftexurat

plate ftexurat

plate ftexurat

........ i ................................

avg. J + 1.2 - 26.2 - 23.5

........ I..................... I.......... .....................
-7

+3

-8

- 4

- 1

-6

- 5

+6

-6

- I

+3

- I

-5

+8

- 2

+1

+4

+1

shear and flexure

2-noded bea_nabt.

weak axis

2-noded beam abt.

strong axis

plate ftexurat

plate ftexural

plate ftexurat

........ I ..................... I..........
avg. J + 1.2 - 3.8 J - 0,7

........ J ..................... I ...............................

+ 19

+ 13

-7

+2

+3

-S

+ 20

+ 16

-4

+6

+7

+ 1

+ 20

+ 17

-2

+6

+7

+3

shear and flexure

2-n(xJed beam abt.

weak axis

2-noded beam abt.

strong axis

plate ftexurat

plate ftexurat

3-n_ed beam abt.

weak axis

........ I ..................... I..........
avg. J + 8.5 + 4.2 J + 7.7

........ J.................... J..........
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Table 7. (Continued)

Plate

Munt_r

and

params.

762

CFRP

8 plies

CO] sym

L/t =

112.7

764

CFRP

8 plies

[0190101

90] sym

L/t =

110.6

770

CFRP

8 plies

[0190145

/-45] sym

L/t =

132.7

Mode Percentage errors Eigenmode

Number description

Lin et. NASTRAM NASTRAN

at. 12-by-12 12-by-12

lumped consis.

........ i ......................................................

+3

+ 10

+6

+ 11

+ 10

+3

+1

+2

1

+1

0

0

+2

+5

+4

+8

+7

+3

........ I..................... I..........
avg. I + 7.2 + 0.5 + 4.8

shear and flexure

2-nodedbeam abt.

weak axis

2-noded beam abt.

weak axis + shear

]-noded beam abt.

weak axis

3-noded beam abt.

weak axis + shear

2-noded beam abt.

strong axis

........ i ......................................................

2

3

4

5

6

avg.

I

2

3

4

5

6

avg.

16

-3

-3

- I

0

-2

- 19 - 18

-5 -3

-7 -4

-3 - 1

-3 0

-8 -3

.......... I.......... I..........
+.2 I z5

.......... i ..........

+ 11 + 10

+11 +9

+9 +6

0 -2

+8 +6

+3 - 1

4.8

+ 12

+ 12

+ 10

+I

+9

+4

+ 7.0 + 4.7 + 8.0

.....................

shear and flexure

2-noded beam abt.

weak axis

2-nodedbeam abt.

weak axis + shear

2-noded beam abt.

strong axis

2-nodedbeam abt.

strong axis + shear

fundamental

plate flexure

..................... i

shear and flexure

2-noded beam abt.

weak axis

plate ftexurat

2-noded beam abt.

strong axis

plate ftexural

plate ftexural

................................ i
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Table 7. (Continued)

PLate

Number

a_

_r_.

CFRP

12 plies

[01-60160

101-60160]

sym

Lit =

106.7

Node

Number

1

2

]

4

5

6

J ........

{ avg.

I

Percentage errors

Lin et.

at,

+5

+3

+4

+6

+5

+3

NASTRAN

12-by-12
lumed

*4

1

*1

*2

+2

-3

NASTRAN

12-by-lZ
consis.

+5

*2

+4

+6

+5

+3

.......... | .......... i ..........

+ 4.3 + 0.8 + 4.2

Eioenmde

description

shear and flexure

2-noded beam abt.

weak axis

2-noded beam abt.

st ronQ axis

plate flexurst

plate f texursl

3-noded been ,dot.

weak axis
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ASSUMPTIONS

(i). Plane stress (o_ = 0),
but nonzero transverse

shear strains

(2). _)21 = VI2(E2/EI)

(3). 2-3 plane is plane of

transverse isotropy,

hence GI3 = GI2

Figure 1. Stress and strain components for a
fiber-reinforced lamina
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Notes: Positive X-axis:

Positive Y-axis:

fiber orientation angle of 0 degrees

fiber orientation angle of 90 degrees

8-noded rectangles

6-by-6 mesh

X

4-noded CQUAD4's

Y J

• il I I I II I |

12-by-12 mesh

I X

(i) Lin and Xiao et. al.
idealization

(ii) NASTRAN CQUAD4
idealization

Figure 2. Plate element meshes used by Lin and

Xiao et. al. and in NASTRAN analyses
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SDUfI'IQr_ 3 - EI_E_AqUJE F_qP/._c_IS

CCJ[: I_:MN 7"EI_U I. eS2t;E÷OS]

Fig. 3a. Plate 734, Mode 1

PLFTTE I'qO. XIFIG, LIN,JU ro_o/o/go3s _uTIP (1_--1_)
SO...LITION 3 - EI(;EP,lt,,qqU.E Icq'qRLqaSl_

CE 6:PIq B: EZ_J 6. (_SBE+OS2

Fig 3b. Plate 734, Mode 2

Figure 3. NASTRAN-computed eigenmodes for plate 734
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PI./IrTE NO. XIIq[3,LINo.Ji.J CO,,'WO,,'O,,'gO:) c= _ (im--e,l_-ie)
S[31_TI¢_I | - E|G_iI, R:LLIIE iq_U.*s'Sl s:
Cc:'" G: _ g; El_ I . 0GtlE4.0G3

Fig. 3c. Plate 734, Mode 3

IC. _ XilIC, L.INo,.IU )

IX)L.UTI[_ 3 -- EIGIB_Uq[.L.E IqrfLYS|ll
( c=r" G: m IO*EIOJ 1.4QSdiE'l'OG3

Fig. 3d. Plate 734, Mode 4

Figure 3. (Continued)
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vS
PL./cY'FEr'4J. XIFtDoL.IN,,.,q.J CO/gQ/O/zJO'tS _ (iLn.-flq,-l_)
SOL.J..FFIC]rq 3 -- El(;B'qbvq./..E tq_ctt.,,,,_lS
Cor" G: J_l'q I | ;EI(_, _* I . 74agE+OG'J

Fig. 3e. Plate 734, Mode 5

FU:rI'E NO. i XllC_,i-IN, JU [O,'qJO/O/g(])S _ (IL:_I_V'-IE)

SOI, LJTIC_4 3 - I:I[_K.J.JE Fi'qPll-_c_ls
[SC G; r,sr_l i E: E li[_t dl .58GBE+OG]

Fig. 3f. Plate 734, Mode 6

Figure 3. (Continued)
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"T_,NI,FqC/_6 (ISlB, q) C(Q10_ GFFIP'_I_.-G'IF*i2)

SOLLrrtGr,C 3 - £1GB'_4_LJE R_IL_,'SJS
Cc:r" 7;m ?;EIQJ E.S_t3E+GS2

Fig. 4a. Plate 761L, Mode 1

RJ:IT[ 7' ,N|,ICFI'E (Ig_i) [(0)0"1 (;FI:F (I_.-8Y-I :_)

cJ].JJTl[]rl | - EIGB_R.L.E RflL.'_EIS

r5_ 8; m 8 : El_ S. ]4_E+I[]S]

Fig 4b. Plate 761L, Mode 2

Figure 4. NASTRAN-computed eigenmodes for plate 761L
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v

? .NI,_ (lgl_l) C(0)83 G;FFIP (12-i_._12)

50LLITI(3_I 3 - EI_ FFiFI.%_IS

Fig. 4c. Plate 761L, Mode 3

Pt.IKTE 7 ,NI,P()Ft'6 (|SIBYl) r(o)B3 _ L_.-BY-I_)

SI]J.rl'lort 3 - E|i_I_q_JE FI_IL_31S

CSC I 0:1,_1 IO:EIGV I . BBTOE+(_;)

Fig. 4d. Plate 761L, Mode 4

Figure 4. (Continued)
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oNlolq:_6 (1_) £¢0)03 _ (1_-8V'-i2)
EE3L,LfflQ'q 3 -- EIGBq_q.,LNE Iq_L_SIS

C I=r" 11 :I'T4 I i :El_J =' . "/51_13E4-062

Fig. 4e. Plate 761L, Mode 5

Fig. 4f. Plate 761L, Mode 6

Figure 4. (Continued)
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v

Pq,.FrrE 7G5 OF L./)_4,f'qljiU/_F:l,6 (l_) [diS''--"d6'dtS'--qS:)S _ (I_-".BV--I_)

gOLJ.rTIC_ 3 - EIG_qt**,V:LI.E f:t*qFLq_IS

C_r" ?:Mr, I ?:EI_ ! ._IGE+OS:]

Fig. 5a. Plate 765, Mode 1

7G_ k,NI,Pd3f:q_6 (Ig94J) C4_'-4_,415,-4-_3 c:: _ (1_-i3_-12)

9i3.J./Tli3r_ 3 - EIC_d.L_ Pr4F:LVcjIS

C c:w' IB: I'r4 8: El G'J I . GG31E+OS'J

Fig 5b. Plate 765, Mode 2

Figure 5. NASTRAN-computed eigenmodes for plate 765



gDLLJTIOI_I 3 -- EII39_AlI-LJIE III_FL_IEIS
Ccr cl;I.ql_4 g: EII_J 3.G4"l"i_+QG]

Fig. 5c. Plate 765, Mode 3

k
laq...ql"E TGS ,Nl,lqi:_ql'6 (IB_I) CdlS,'-4S, S GFFIP (IL"_'--I2)
SiOLl._lO't 3 -- Ell;aq_qL/.E _q'S! c=
Cca- 1o;ttrq i O-EIGt) 7. "/gTIOE+OS]

Fig. 5d. Plate 765, Mode 4

Figure 5. (Continued)
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7 _c; OF'_L oN|,_ (Ige4) [_IS,_,4S,_'JS [_ (12_--12)

SOU..ffI_ 3 -- EIG_qqI.LE P_4%._IS

[cz'- II:HN I I :E|I_J B. Cx_00E+0S:2

Fig. 5e. Plate 765, Mode 5

b/

v

7_

S[X.UTIOr, I :3 - EI(_E_%4RU.IE I=INRL,,,r_|S

K c_" 12;m 12: EIGU I. 9_¢1_E+0_'_

Fig. 5f. Plate 765, Mode 6

Figure 5. (Continued)
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Fig. 6a. Plate 769, Mode 1

TG9 ,NI,fOqt_ (IgHdl) CO*gO,dlS,'-qoj= _ (IL_(E_--IW)
S[1J./TI¢_ ] -- EI_&_LJ.J[ Pi',IIqL**_S|S
¢c_ 8: m 0: El_ E.ilGR'TE+G63

Fig 6b. Plate 769, Mode 2

Figure 6. NASTRAN-computed eigenmodes for plate 769
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R.RTI[ 7G9 OF" _,NI,R:/:r6 (lcJS4) CO,gO,qS,--qS]S GFRP (IhS--lEh'--t_)

_I_]..L/TIC]r'4 'a _ EI_E]M&,qRUJ[ Ft_RL**_SIS
[c:r" 9:m g: EIGV q._=OIC_"l'O$ "j

Fig. 6c. Plate 769, Mode 3

F.[.J:rrE 7 _q C_" L,f_l, Nl,_ (ISB4} rO,gO,.qs,*.-qS]S GF'FF (i:=.-.E_,'-IE)
_3LUTII:]r,I ] - IEIGm_R:LJ.IE I=/IRL.YSlS
[E i O; I1_1 I O: EIGr_ E . ETI;EE+CS "1

Fig. 6d. Plate 769, Mode 4

Figure 6. (Continued)

92



k
PL,RTE 71;9 ,N|,l:l[]l:q115 (iSlB'q) [0,gCI,,qls,--4S'IS GFI:IP (IE_--BV--I;_)

S[X..L/TIC)_I 3 o EIGB'_4cqLUE f:tf:SlL.evISIS

Cclr" I I :PIN 1 1 :EIQJ _' . 413'O4E+0S3

Fig. 6e. Plate 769, Mode 5

PL.R'I"E ?g9 ,N|,iqJl_ (19B4) C0,90,'qlS,.--qi5"lS GFFI :) (I_iE)

C_3LJJTIO"i 3 - EIGB_A_LLJE FI,4qL,_IS

C ca"" IE; I"r4 l;_: [l(_J i_. H4.0i;)

Fig. 6f. Plate 769, Mode 6

Figure 6. (Continued)

93



VIB PL/:IrT1E_'_I _ LIN, NI,FI:]FI'5 [(0,_0, GFI_P (IL=-4_-12)

S[_..Lfl'IC]r4 3 - EIG_'_t.J.E Pr4qL_l c:

t-_r. -/': 1,1_4 "r: EI_J 3 .'r3S3E+OS3

Fig. 7a. Plate 771, Mode i

4.4.

uIS t 0F bI_I.iNI.MCI_S C(0.--C,O._0*e2S _ (tL:_m_--te;
scmjulrll:ml 3 - EII;B'_=IJ.I[ plNmUS411S

CC:_ " IB: _ O: EI(_J B. "r"_ I IE+OS3

Fig 7b. Plate 771, Mode 2

Figure 7. NASTRAN-computed eigenmodes for plate 771
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JO4 UIg _ "_'1 OF LIN,NI,fOq4_ r(O,.-G0,G0)Z_S _ (IE--BY-IE)
gOl.l_l'larq | - EIG_dPLJLJE Iq_q.YSIS

Cc:a" g; F4N g; E|I_ I, 4Q_EqI_G3

Fig. 7c. Plate 771, Mode 3

VIm 1 I]I LIN,NI,Iq_qqs r(o,--.tO,lO)E2S _ (II_ItY-I|)
Si[3LJ./TII[_I ] -- EIC_AqLJ.E Iq'_l.'V'EI c:

Cca'" 10"_/_ IO;EIGV il . 3G"/lg_'i'OG3

Fig. 7d. Plate 771, Mode 4

Figure 7. (Continued)
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J[_ rib _I_I OF LIN,NI.R3R"6 [(0,--E0, GF'IRP (IE--EV°IE)

K]LLI'TII_ 11 - EIGB_IJRLLE RII:ILYSlS
[SC I I "191 I I "EIG_J | . "T? | I[E,4'OG'_

Fig. 7e. Plate 771, Mode 5

JO"l VI8 R.Rg_'_I OF I.IN,Nl,lq]q'B [(0, S I;k'l:P (le-OY..-li_)

SiOLLIrTIC_4 • -- EII;_',A.AqLUE IgiNIql.._dS|S

CS[: IE:m IE:EI_J 7. I4,qlE+0G]

Fig. 7f. Plate 771, Mode 6

Figure 7. (Continued)
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Fig. 8a. Plate 762, Mode 1

UI I:1 ¢]F IL,.IN,N|,f:l_q_5 1"(0)82 _ (IL_,.IBV-IR)
gOLJ.tTIC_ ] -- EIGB_IP,,,IF_/,.L.E A',41OlL%'cJIS

Fig 8b. Plate 762, Mode 2

Figure 8. NASTRAN-computed eigenmodes for plate 762
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Sl_l.._iEl"4 3 - EII;E_ 1_15

Fig. 8c. Plate 762, Mode 3

_VIeI_I-FN1E_OF LIN,NI,FIOI_5 [(O_9.].._qp_lLz_Bv_12)

_J.JJT|OI_ 3 -- EI_E]N_=ILL/EIqlNPL_IS

Fig. 8d. Plate 762, Mode 4

Figure 8. (Continued)
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/- >

Jl::14 Ulll PI.ATIE_Ga [IF LIN,I_I,IqI:_tS ((0)83 IL==6Y--IE)

S[31J.ITIC_ i - [II;_iI.FIJJ_ I_FI.%SlS

Fig. 8e. Plate 762, Mode 5

Fig. 8f. Plate 762, Mode 6

Figure 8. (Continued)
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